Downscaling Land Surface Temperature in an Urban Area: A Case Study for Hamburg, Germany

نویسندگان

  • Benjamin Bechtel
  • Klemen Zaksek
  • Gholamali Hoshyaripour
چکیده

Monitoring of (surface) urban heat islands (UHI) is possible through satellite remote sensing of the land surface temperature (LST). Previous UHI studies are based on medium and high spatial resolution images, which are in the best-case scenario available about four times per day. This is not adequate for monitoring diurnal UHI development. High temporal resolution LST data (a few measurements per hour) over a whole city can be acquired by instruments onboard geostationary satellites. In northern Germany, geostationary LST data are available in pixels sized 3,300 by 6,700 m. For UHI monitoring, this resolution is too coarse, it should be comparable instead to the width of a building block: usually not more than 100 m. Thus, an LST downscaling is proposed that enhances the spatial resolution by a factor of about 2,000, which is much higher than in any previous study. The case study presented here (Hamburg, Germany) yields promising results. The latter, available every 15 min in 100 m spatial resolution, showed a high explained variance (R 2 : 0.71) and a relatively low root mean square error (RMSE: 2.2 K). For lower resolutions the downscaling scheme performs even better (R 2 : 0.80, RMSE: 1.8 K for 500 m; R 2 : 0.82, RMSE: 1.6 K for 1,000 m).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remote sensing for urban heat and cool islands evaluation in semi-arid areas

Cities are experiencing rapid population growth and consequently extensive urbanization. Land-use/land-cover change is one of the important elements worldwide, which significantly affect the environment. This study aims to describe the emergence of urban heat and cool islands as a result of changes in land-use/land-cover. Land surface temperature over a 32-year period in Isfahan city, Iran was ...

متن کامل

Investigation of Impervious surface and Urban Surface Temperature in Qaemshahr

Information on a variation of impervious surface is useful for understanding urbanization and its impacts on the hydrological cycle, water management, surface energy balances, urban heat island, and biodiversity. This research attempts to detect impervious surfaces and its changes by satellite imagery in Qaemshahr. The relationship between impervious surfaces and changes in land surface tempera...

متن کامل

Effect of Vegetation Cover on Energy Consumption Optimization due to Reduction of Urban Heat Island intensity: Case of Tehran Metropolitan Area

Urbanization through rapid constructions, is the main cause of high heat absorption in urban centers. In addition, the accumulation of heat energy resulted by removal of vegetation cover, has contributed to formation of urban heat islands (UHIs). The spatial distribution of heat intensity in Tehran Metropolitan Area was studied, and the influence of land use and green cover were analyzed in the...

متن کامل

Radiation balance and urban land use (case study: Kermanshah city)

Population growth and urbanization development are the main triggering factors of changes in urban land uses. These, in turn, result in changes in the components of radiation balance. The present study tries to analyze the role of urban land uses in radiation balance by calculating net radiation and its analysis. For this purpose, the Landsat 8 satellite image of 2016 was used. Characteristics ...

متن کامل

Microclimate land surface temperatures across urban land use/ land cover forms

Urbanization brings biophysical changes in the composition of the landscape. Such change has an impact on the thermal environment locally. The urban mosaic of land use and land cover is thus characteristically composed of local climate zones. The spatial variation in the land surface temperature across specific zone is studied for Bhopal city. The objective of the study was to understand how th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2012